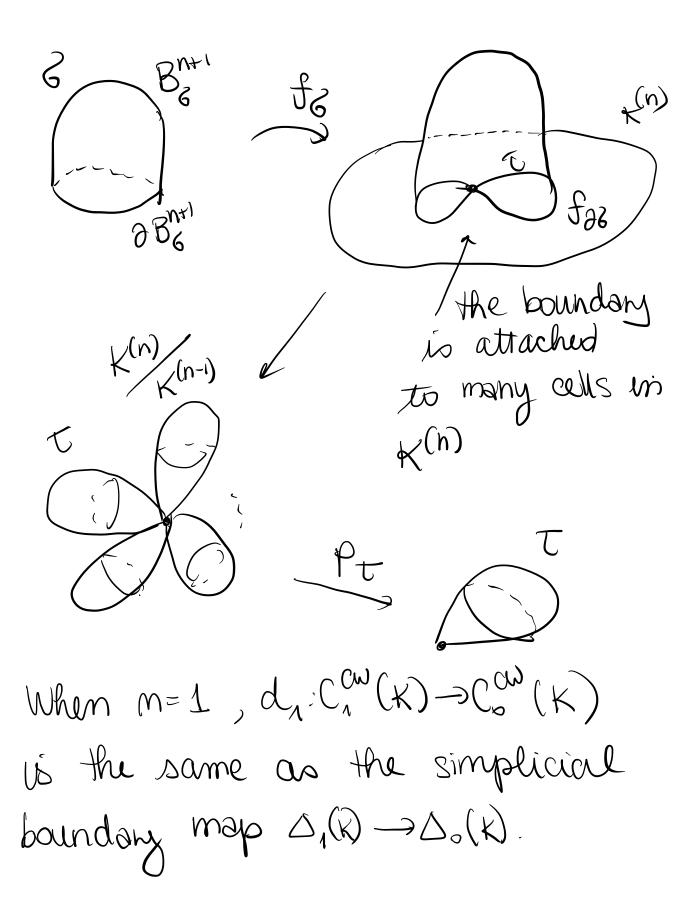
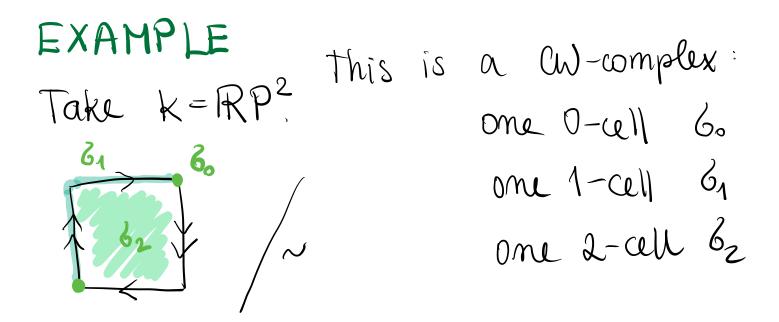
$q^{u+1}(s) = \overline{\Phi} \overline{\Phi} \overline{\Phi}(s) =$ $= \oint \int_{n} \partial_{n+1} \left(f_{\mathcal{S}} \right)_{*} \left(\left[B_{n+1}^{n+1} \right] \right) =$ $=\overline{\Phi}\left(j_{n}\left(f_{\partial\delta}\right)_{*}\left(\left[\partial B_{\delta}^{nri}\right]\right)\right)$ $= \sum \Phi_n((P_t)_*(j_n(f_{\partial \partial}_*L\partial B_6^{n+1})))t$ / collapses (n-i)-skeleton (PZ)*ojnoltor)* $= \sum \Phi_n \left(\left(P_T \circ f_{\partial \partial} \right)_* \left[\partial B_0^{\partial + 1} \right] \right) T$ here we for t we take just us simplified = 2 dug (pt of 23). t notation So, $[T:6] = dug(p_T \circ f_{00})$

What is happening geometrically?



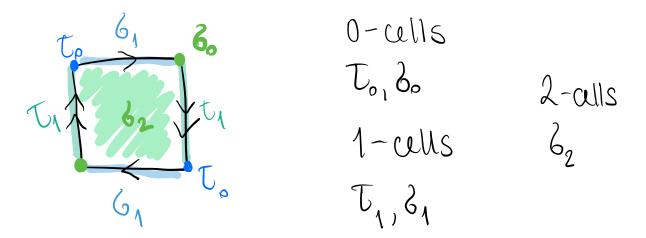


CW-chain complex

 $- \rightarrow 0 \rightarrow \mathbb{Z}_{0} \rightarrow \mathbb$

 $d_{0} = 0$ $d_{1} = 0$ ε starting & ending point one the same $d_{2} = 2 \cdot c_{1}$ (or $-2 \cdot c_{1}$) sign depends on $d_{0}(\mathbb{R}\mathbb{P}^{2}) \cong \mathbb{Z}$ $H_{0}(\mathbb{R}\mathbb{P}^{2}) \cong \mathbb{Z}/_{2\mathbb{Z}}$ $H_{1}(\mathbb{R}\mathbb{P}^{2}) \cong \mathbb{Z}/_{2\mathbb{Z}}$ $H_{2}(\mathbb{R}\mathbb{P}^{2}) \cong 0$

Option #2 CW Structure

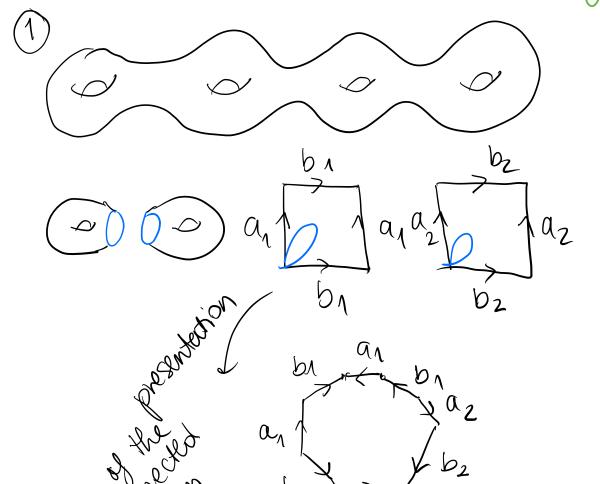


Cellular chain complex $() \rightarrow \overline{\mathcal{I}} \xrightarrow{d_2} \overline{\mathcal{I}} \xrightarrow{2} \overline{\mathcal{I}} \xrightarrow{2} \overline{\mathcal{I}} \xrightarrow{2} 0$ $d_2(3_2) = 2\tau_1 + 2G_1 = 2(\tau_1 + 2G_1)$ $d_1(T_1) = T_0 - \delta_0$ $\ker cl_1 = \langle T_1 + g_1 \rangle$ $d_{1}(6_{1}) = \delta_{0} - \overline{U}_{0}$ $H_{o}(\mathbb{R}P^{2}) = \langle T_{0}, 6_{0} \rangle \cong \langle T_{0} - b_{0}, b_{0} \rangle \cong \mathbb{Z}$ <Tn-2~> /Im d1 $H_{1}(\mathbb{R}P^{2}) = \langle \mathcal{T}_{1} + \mathcal{E}_{1} \rangle$ $2 \langle \mathcal{T}_{1} + \mathcal{E}_{1} \rangle$ ~ Zh $H_{2}(\mathbb{R}P^{2}) = \operatorname{kend}_{2} = 0$

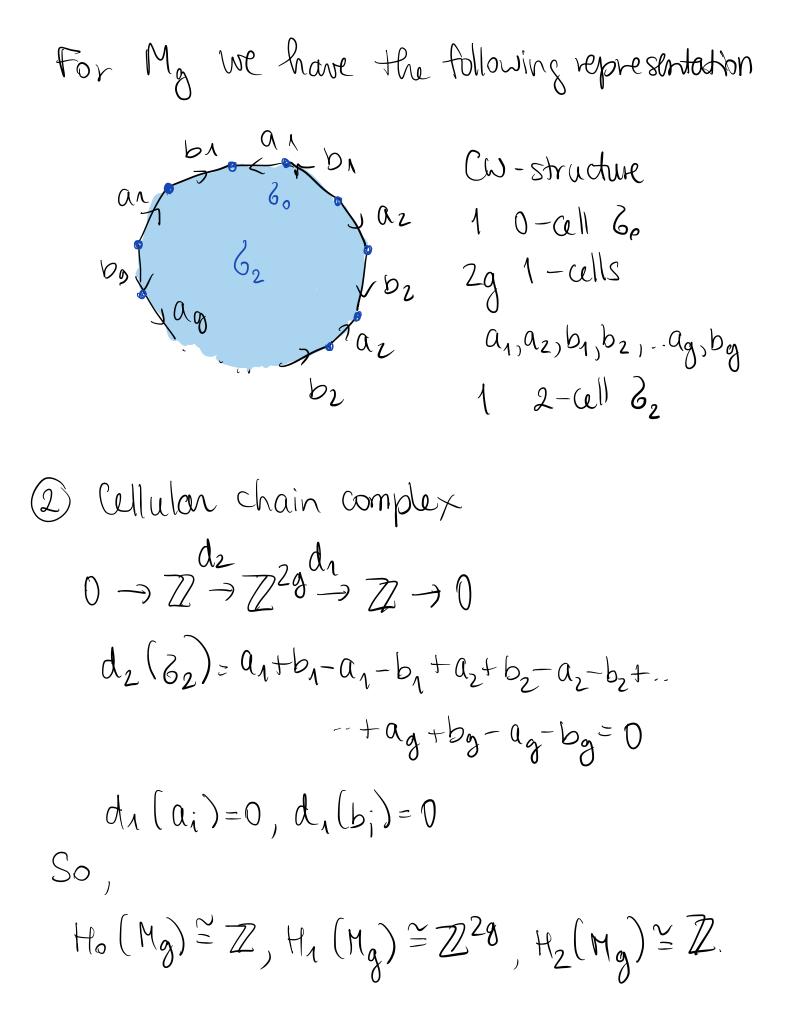
When doing exercises you don't have to worry about finding minimal cus-structure. EXERCISE Let Mg be a closed orientable surface of genus g (connected sum of g many

toni).

Find CW-structure on Mg.
 Compute homology groups of Mg.



a



WINTER 2016 Exam X, Y (W-complexes (Keth), W (K-1)-cell & (K+1)-cell Show that $\sum_{tk-cells}$ [W:t][t:6]=0

$$Proof$$

 $d_{n+1}(2) = \sum_{T} [T:C]T$

$$0 = d_{n} \circ d_{n} (\delta) = \sum_{T} [T: \delta] d_{n}(T)$$

$$= \sum_{T} \sum_{W} [T: \delta] [W:T] W =$$

$$t w$$

$$k - u | |s| (k - 1) - u | |s|$$

$$= \sum_{W} (\sum_{W - 1} [T: \delta] [W:T]) W$$

$$(k - 1) - u | |s| (k - u) | |s|$$

$$\Rightarrow \sum_{T} [T: \delta] [W:T] = 0$$

$$k - u | |s|$$